The ability to measure the satisfaction of (groups of) voters is a crucial prerequisite for formulating proportionality axioms in approval-based participatory budgeting elections. Two common - but very different - ways to measure the satisfaction of a voter consider (i) the number of approved projects and (ii) the total cost of approved projects, respectively. In general, it is difficult to decide which measure of satisfaction best reflects the voters' true utilities. In this paper, we study proportionality axioms with respect to large classes of approval-based satisfaction functions. We establish logical implications among our axioms and related notions from the literature, and we ask whether outcomes can be achieved that are proportional with respect to more than one satisfaction function. We show that this is impossible for the two commonly used satisfaction functions when considering proportionality notions based on extended justified representation, but achievable for a notion based on proportional justified representation. For the latter result, we introduce a strengthening of priceability and show that it is satisfied by several polynomial-time computable rules, including the Method of Equal Shares and Phragm\`en's sequential rule.


翻译:衡量(选民群体)满意度的能力是制定在核准基础上的参与性预算编制选举中的相称性原则的关键先决条件。两种共同的、但非常不同的衡量选民满意度的方法分别考虑到:(一) 核准的项目数目和(二) 核准的项目总费用。一般而言,很难决定哪种满意度最能反映选民真正的公用事业。在本文件中,我们研究了与大量基于批准的各种满意度功能相称性原则。我们确定了我们的原则性概念和文献中的相关概念之间的逻辑影响,我们询问能否取得与一个以上满意度功能相称的结果。我们表明,在考虑基于扩大的合理代表性的相称性概念时,两种常用的满足性功能是不可能的,但对于基于比例合理代表性的概念,则可以实现。后一种结果是,我们引入了一种可定价性,并表明它为若干多时的可调和规则所满足,包括平等份额和Phragm ⁇ en的相继规则。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
0+阅读 · 2023年3月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员