Spatial association measures for univariate static spatial data are widely used. When the data is in the form of a collection of spatial vectors with the same temporal domain of interest, we construct a measure of similarity between the regions' series, using Bergsma's correlation coefficient $\rho$. Due to the special properties of $\rho$, unlike other spatial association measures which test for spatial randomness, our statistic can account for spatial pairwise independence. We have derived the asymptotic behavior of our statistic under null (independence of the regions) and alternate cases (the regions are dependent). We explore the alternate scenario of spatial dependence further, using simulations for the SAR and SMA dependence models. Finally, we provide application to modelling and testing for the presence of spatial association in COVID-19 incidence data, by using our statistic on the residuals obtained after model fitting.
翻译:对于单变量静态空间数据的空间相关性度量被广泛使用。当数据采用具有相同时间域的空间向量集合形式时,我们使用Bergsma相关系数$\rho$构造区域系列之间的相似度量。由于$\rho$的特殊属性,与测试空间随机性的其他空间关联度量不同,我们的统计量可以考虑空间成对独立性。我们推导了在零假设下(区域间独立)和备择场景下(区域相关)我们的统计量的渐近行为。我们使用SAR和SMA相关模型模拟了空间依赖性的备择情况。最后,我们提供了将我们的统计量应用于COVID-19发病率数据建模和测试的应用。