Spatial association measures for univariate static spatial data are widely used. When the data is in the form of a collection of spatial vectors with the same temporal domain of interest, we construct a measure of similarity between the regions' series, using Bergsma's correlation coefficient $\rho$. Due to the special properties of $\rho$, unlike other spatial association measures which test for spatial randomness, our statistic can account for spatial pairwise independence. We have derived the asymptotic behavior of our statistic under null (independence of the regions) and alternate cases (the regions are dependent). We explore the alternate scenario of spatial dependence further, using simulations for the SAR and SMA dependence models. Finally, we provide application to modelling and testing for the presence of spatial association in COVID-19 incidence data, by using our statistic on the residuals obtained after model fitting.


翻译:对于单变量静态空间数据的空间相关性度量被广泛使用。当数据采用具有相同时间域的空间向量集合形式时,我们使用Bergsma相关系数$\rho$构造区域系列之间的相似度量。由于$\rho$的特殊属性,与测试空间随机性的其他空间关联度量不同,我们的统计量可以考虑空间成对独立性。我们推导了在零假设下(区域间独立)和备择场景下(区域相关)我们的统计量的渐近行为。我们使用SAR和SMA相关模型模拟了空间依赖性的备择情况。最后,我们提供了将我们的统计量应用于COVID-19发病率数据建模和测试的应用。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
129+阅读 · 2023年1月29日
【2022新书】机器学习中的统计建模:概念和应用,398页pdf
专知会员服务
141+阅读 · 2022年11月5日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
44+阅读 · 2020年12月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员