Salient instance segmentation is a new challenging task that received widespread attention in saliency detection area. Due to the limited scale of the existing dataset and the high mask annotations cost, it is difficult to train a salient instance neural network completely. In this paper, we appeal to train a salient instance segmentation framework by a weakly supervised source without resorting to laborious labeling. We present a cyclic global context salient instance segmentation network (CGCNet), which is supervised by the combination of the binary salient regions and bounding boxes from the existing saliency detection datasets. For a precise pixel-level location, a global feature refining layer is introduced that dilates the context features of each salient instance to the global context in the image. Meanwhile, a labeling updating scheme is embedded in the proposed framework to online update the weak annotations for next iteration. Experiment results demonstrate that the proposed end-to-end network trained by weakly supervised annotations can be competitive to the existing fully supervised salient instance segmentation methods. Without bells and whistles, our proposed method achieves a mask AP of 57.13%, which outperforms the best fully supervised methods and establishes new states of the art for weakly supervised salient instance segmentation.
翻译:由于现有数据集的规模有限和掩码说明成本高,很难对显著神经网络进行彻底培训。在本文件中,我们呼吁由一个监督不力的源头来培训突出实例分解框架,而不必使用辛苦的标签。我们展示了一个环状全球环境突出分解网络(CGCNet),这个网络由二进制突出区域和从现有突出检测数据集中捆绑框的组合所监督。在一个精确的像素级位置上,引入了一个全球地貌精炼层,将每个突出实例的背景特征与图像中的全球背景特征相扩大。与此同时,一个标签更新机制嵌入了拟议的框架,以在线更新薄弱的注释,供下次循环使用。实验结果表明,由监督不力的描述所培训的端对端网络可以与现有的完全监督的突出分解方法相竞争。如果没有钟和哨音,我们拟议的方法可以实现57.13%的AP掩码,使每个突出实例的背景特征与图像的全新版本相容。同时,这种更新机制将充分监督地显示最弱的状态。