Joint object detection and semantic segmentation can be applied to many fields, such as self-driving cars and unmanned surface vessels. An initial and important progress towards this goal has been achieved by simply sharing the deep convolutional features for the two tasks. However, this simple scheme is unable to make full use of the fact that detection and segmentation are mutually beneficial. To overcome this drawback, we propose a framework called TripleNet where triple supervisions including detection-oriented supervision, class-aware segmentation supervision, and class-agnostic segmentation supervision are imposed on each layer of the decoder network. Class-agnostic segmentation supervision provides an objectness prior knowledge for both semantic segmentation and object detection. Besides the three types of supervisions, two light-weight modules (i.e., inner-connected module and attention skip-layer fusion) are also incorporated into each layer of the decoder. In the proposed framework, detection and segmentation can sufficiently boost each other. Moreover, class-agnostic and class-aware segmentation on each decoder layer are not performed at the test stage. Therefore, no extra computational costs are introduced at the test stage. Experimental results on the VOC2007 and VOC2012 datasets demonstrate that the proposed TripleNet is able to improve both the detection and segmentation accuracies without adding extra computational costs.


翻译:联合物体探测和语义分割可适用于许多领域,如自驾驶汽车和无人表面船等自驾驶汽车和无人表面船。通过简单分享这两项任务的深演分解特征,在实现这一目标方面取得了初步和重要进展。然而,这一简单办法无法充分利用检测和分解是互利的这一事实。为了克服这一缺陷,我们提议了一个称为TripleNet的框架,在这个框架中,三重监督,包括以探测为导向的监督、阶级认知分解监督和等级分解监督,以及分解监督。对于分解网络的每一层,分类和分解监督是初步和重要的。级分解监督为分解和对象检测提供了一种目标性知识。除了三种类型的监督外,两个轻度模块(即与内联模块和注意权重混合)也被纳入了分解器的每一层。在拟议的框架中,检测和分解能够相互促进。此外,每个分解层的分类和分解分解分解系统没有在测试阶段进行对象性分析,因此,在测试阶段不进行实验性计算成本,因此不进行额外的计算结果,在试验阶段进行。

3
下载
关闭预览

相关内容

专知会员服务
109+阅读 · 2020年3月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
UPSNet: A Unified Panoptic Segmentation Network
Arxiv
4+阅读 · 2019年1月12日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
Top
微信扫码咨询专知VIP会员