The escalating frequency and severity of disasters routinely overwhelm traditional response capabilities, exposing critical vulnerability in disaster management. Current practices are hindered by fragmented data streams, siloed technologies, resource constraints, and the erosion of institutional memory, which collectively impede timely and effective decision making. This study introduces Disaster Copilot, a vision for a multi-agent artificial intelligence system designed to overcome these systemic challenges by unifying specialized AI tools within a collaborative framework. The proposed architecture utilizes a central orchestrator to coordinate diverse sub-agents, each specializing in critical domains such as predictive risk analytics, situational awareness, and impact assessment. By integrating multi-modal data, the system delivers a holistic, real-time operational picture and serve as the essential AI backbone required to advance Disaster Digital Twins from passive models to active, intelligent environments. Furthermore, it ensures functionality in resource-limited environments through on-device orchestration and incorporates mechanisms to capture institutional knowledge, mitigating the impact of staff turnover. We detail the system architecture and propose a three-phased roadmap emphasizing the parallel growth of technology, organizational capacity, and human-AI teaming. Disaster Copilot offers a transformative vision, fostering collective human-machine intelligence to build more adaptive, data-driven and resilient communities.
翻译:暂无翻译