Can we color the $n^3$ cells of an $n\times n\times n$ cube $L$ with $n^2$ colors in such a way that each layer parallel to each face contains each color exactly once and that the coloring is symmetric so that $L_{ij\ell}=L_{j\ell i}=L_{\ell ij}$ for distinct $i,j,\ell \in \{1,\dots,n\}$, and $L_{iij}=L_{jj i}, L_{iji}=L_{jij}, L_{ij j}=L_{jii}$ for $i,j\in \{1,\dots,n\}$? Using transportation networks, we show that such a coloring is possible if and only if $n\equiv 0,2 \mod 3$ (with two exceptions, $n=1$ and $n\neq 3$). Motivated by the designs of experiments, the study of these objects (without symmetry) was initiated by Kishen and Fisher in the 1940's. These objects are also closely related to orthogonal arrays whose existence has been extensively investigated, and they are natural three-dimensional analogues of symmetric latin squares.
翻译:我们能否以每张面相平行的每层包含每色一次, 以每张面相平行的每层都包含每色一次, 色度是对应的, 因此, 色度只有$ ij\ ell\ ⁇ L j\ j\ el i\ ⁇ L ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 1,\\\ dots, n\ ⁇, 和 $ ⁇ i, ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇, ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇