Presence-absence data is defined by vectors or matrices of zeroes and ones, where the ones usually indicate a "presence" in a certain place. Presence-absence data occur for example when investigating geographical species distributions, genetic information, or the occurrence of certain terms in texts. There are many applications for clustering such data; one example is to find so-called biotic elements, i.e., groups of species that tend to occur together geographically. Presence-absence data can be clustered in various ways, namely using a latent class mixture approach with local independence, distance-based hierarchical clustering with the Jaccard distance, or also using clustering methods for continuous data on a multidimensional scaling representation of the distances. These methods are conceptually very different and can therefore not easily be compared theoretically. We compare their performance with a comprehensive simulation study based on models for species distributions.


翻译:例如,在调查地理物种分布、遗传信息或文本中出现某些术语时,会出现缺席数据。 有许多将这些数据分组的应用;一个例子是找到所谓的生物元素,即往往在地理上共同出现的物种群。 不存在数据可以以不同方式分组,即使用具有当地独立性的潜在级混合方法、基于距离的远距离等级组合,或者使用组合方法,连续提供多维比例代表距离的连续数据。这些方法在概念上非常不同,因此不易在理论上加以比较。我们将它们的性能与基于物种分布模型的综合模拟研究进行比较。

0
下载
关闭预览

相关内容

专知会员服务
43+阅读 · 2020年11月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月13日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员