Kanerva (2014) suggested that it would be possible to construct a complete Lisp out of a vector-symbolic architecture. We present the general form of a vector-symbolic representation of the five Lisp elementary functions, lambda expressions, and other auxiliary functions, found in the Lisp 1.5 specification McCarthy (1960), which is near minimal and sufficient for Turing-completeness. Our specific implementation uses holographic reduced representations Plate (1995), with a lookup table cleanup memory. Lisp, as all Turing-complete languages, is a Cartesian closed category, unusual in its proximity to the mathematical abstraction. We discuss the mathematics, the purpose, and the significance of demonstrating vector-symbolic architectures' Cartesian-closure, as well as the importance of explicitly including cleanup memories in the specification of the architecture.
翻译:Kanerva (2014) 曾提出,有可能基于向量符号架构构建一个完整的Lisp语言。我们提出了Lisp 1.5规范 McCarthy (1960) 中五个Lisp基本函数、lambda表达式及其他辅助函数的向量符号表示的一般形式,该形式近乎最小且足以实现图灵完备性。我们的具体实现采用了全息简化表示 Plate (1995),并配备了一个查找表清理存储器。Lisp,如同所有图灵完备语言一样,是一个笛卡尔闭范畴,其独特之处在于极其接近数学抽象。我们讨论了证明向量符号架构笛卡尔闭性的数学原理、目的与意义,以及在架构规范中明确包含清理存储器的重要性。