In this article, we propose a modified nonlinear Schr\"odinger equation for modeling pulse propagation in optical waveguides. The proposed model bifurcates into a system of elliptic and hyperbolic equations depending on waveguide parameters. The proposed model leads to a stable first-order system of equations, distinguishing itself from the canonical nonlinear Schr\"odinger equation. We have employed the space-time discontinuous Petrov-Galerkin finite element method to discretize the first-order system of equations. We present a stability analysis for both the elliptic and hyperbolic systems of equations and demonstrate the stability of the proposed model through several numerical examples on space-time meshes.
翻译:暂无翻译