Artificial Intelligence (AI) is becoming the corner stone of many systems used in our daily lives such as autonomous vehicles, healthcare systems, and unmanned aircraft systems. Machine Learning is a field of AI that enables systems to learn from data and make decisions on new data based on models to achieve a given goal. The stochastic nature of AI models makes verification and validation tasks challenging. Moreover, there are intrinsic biaises in AI models such as reproductibility bias, selection bias (e.g., races, genders, color), and reporting bias (i.e., results that do not reflect the reality). Increasingly, there is also a particular attention to the ethical, legal, and societal impacts of AI. AI systems are difficult to audit and certify because of their black-box nature. They also appear to be vulnerable to threats; AI systems can misbehave when untrusted data are given, making them insecure and unsafe. Governments, national and international organizations have proposed several principles to overcome these challenges but their applications in practice are limited and there are different interpretations in the principles that can bias implementations. In this paper, we examine trust in the context of AI-based systems to understand what it means for an AI system to be trustworthy and identify actions that need to be undertaken to ensure that AI systems are trustworthy. To achieve this goal, we first review existing approaches proposed for ensuring the trustworthiness of AI systems, in order to identify potential conceptual gaps in understanding what trustworthy AI is. Then, we suggest a trust (resp. zero-trust) model for AI and suggest a set of properties that should be satisfied to ensure the trustworthiness of AI systems.


翻译:人工智能(AI)正在成为我们日常生活中许多系统,如自主车辆、保健系统和无人驾驶航空器系统,的角落。机器学习是AI的一个领域,它使各个系统能够从数据中学习,并根据实现特定目标的模式就新数据作出决定。AI模型的随机性使得核查和验证任务具有挑战性。此外,AI模型中存在内在的两层,如可复制性偏差、选择偏差(例如种族、性别、肤色)和报告偏差(即结果不反映现实)等。 越来越多的是,还特别关注AI的道德、法律和社会影响。AI系统很难审计和核证,因为它们具有黑箱性质。它们似乎也容易受到威胁;AI系统在提供不可靠的数据时可能存在错误。各国政府、国家和国际组织提出了克服这些挑战的若干原则,但在实践中应用有限,对原则的解释也各不相同(即不反映现实)。在本文中,我们检查对AI系统道德、法律和社会影响的特殊性的影响。在透明性方面,我们研究信任在AI系统背景下,需要有一个可靠的方法来理解。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
17+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月10日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
30+阅读 · 2022年2月15日
Arxiv
28+阅读 · 2022年1月13日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
12+阅读 · 2021年8月19日
Arxiv
126+阅读 · 2020年9月6日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2022年8月10日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
30+阅读 · 2022年2月15日
Arxiv
28+阅读 · 2022年1月13日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
12+阅读 · 2021年8月19日
Arxiv
126+阅读 · 2020年9月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员