The computational vision community has recently paid attention to continual learning for blind image quality assessment (BIQA). The primary challenge is to combat catastrophic forgetting of previously-seen IQA datasets (i.e., tasks). In this paper, we present a simple yet effective continual learning method for BIQA with improved quality prediction accuracy, plasticity-stability trade-off, and task-order/-length robustness. The key step in our approach is to freeze all convolution filters of a pre-trained deep neural network (DNN) for an explicit promise of stability, and learn task-specific normalization parameters for plasticity. We assign each new task a prediction head, and load the corresponding normalization parameters to produce a quality score. The final quality estimate is computed by a weighted summation of predictions from all heads with a lightweight K-means gating mechanism, without leveraging the test-time oracle. Extensive experiments on six IQA datasets demonstrate the advantages of the proposed method in comparison to previous training techniques for BIQA.
翻译:计算视觉界最近关注了盲人图像质量评估的持续学习(BIQA),主要挑战是如何消除灾难性地忘记以前所见的IQA数据集(即任务)的问题。在本文件中,我们为BIQA提出了一个简单而有效的持续学习方法,提高了质量预测准确性、可塑性稳定权衡和任务命令/长度强度。我们方法的关键步骤是冻结预先训练的深神经网络的所有转动过滤器,以明确实现稳定性,并学习具体任务对塑料的正常化参数。我们为每一项新任务指定了一个预测头,并加载相应的正常化参数以产生质量评分。最后的质量估计是通过对所有头部的预测进行加权比较,同时不利用测试时间或触角。对6个IQA数据集进行的广泛实验表明拟议方法与BIQA以前的训练技术相比的优势。</s>