Retrospective artifact correction (RAC) improves image quality post acquisition and enhances image usability. Recent machine learning driven techniques for RAC are predominantly based on supervised learning and therefore practical utility can be limited as data with paired artifact-free and artifact-corrupted images are typically insufficient or even non-existent. Here we show that unwanted image artifacts can be disentangled and removed from an image via an RAC neural network learned with unpaired data. This implies that our method does not require matching artifact-corrupted data to be either collected via acquisition or generated via simulation. Experimental results demonstrate that our method is remarkably effective in removing artifacts and retaining anatomical details in images with different contrasts.
翻译:逆向文物校正( RAC) 提高了图像质量, 提高了图像可用性。 最近, RAC 的机器学习技术主要以监督学习为基础, 因此实际用途可能有限, 因为与配对的无文物和有文物腐蚀的图像有关的数据通常不足, 甚至根本不存在。 我们在这里显示, 不需要的图像文物可以通过 RAC 神经网络分离, 从图像中移除。 这意味着我们的方法并不要求通过获取或模拟收集来匹配被破坏的文物数据。 实验结果显示, 我们的方法在清除文物和保留与不同对比的图像中的解剖细节方面非常有效 。