Data augmentation is rapidly gaining attention in machine learning. Synthetic data can be generated by simple transformations or through the data distribution. In the latter case, the main challenge is to estimate the label associated to new synthetic patterns. This paper studies the effect of generating synthetic data by convex combination of patterns and the use of these as unsupervised information in a semi-supervised learning framework with support vector machines, avoiding thus the need to label synthetic examples. We perform experiments on a total of 53 binary classification datasets. Our results show that this type of data over-sampling supports the well-known cluster assumption in semi-supervised learning, showing outstanding results for small high-dimensional datasets and imbalanced learning problems.
翻译:在机器学习中,数据扩增正在迅速引起注意。合成数据可以通过简单的转换或通过数据分布生成。在后一种情况下,主要的挑战是如何估计与新的合成模式相关的标签。本文研究通过模式的二次曲线组合生成合成数据的影响,以及利用这些模型作为无监督的信息在半监督的学习框架中生成,并配有支持矢量机器,从而避免需要贴上合成示例标签。我们共对53个二元分类数据集进行了实验。我们的结果显示,这种过度抽样的数据支持了半监督学习中众所周知的群集假设,显示了小型高维数据集和不平衡学习问题的突出结果。