We apply basic statistical reasoning to signal reconstruction by machine learning -- learning to map corrupted observations to clean signals -- with a simple and powerful conclusion: under certain common circumstances, it is possible to learn to restore signals without ever observing clean ones, at performance close or equal to training using clean exemplars. We show applications in photographic noise removal, denoising of synthetic Monte Carlo images, and reconstruction of MRI scans from undersampled inputs, all based on only observing corrupted data.
翻译:我们运用基本的统计推理来通过机器学习来标志重建 -- -- 学会将腐败的观测结果映射成清洁的信号 -- -- 并得出一个简单而有力的结论:在某些常见情况下,在使用清洁的模拟器进行接近或等同于培训时,可以学会在不观测清洁的信号的情况下恢复信号。 我们展示了摄影噪音去除、合成蒙特卡洛图像去除音异,以及从未充分抽样的投入中重建MRI扫描等应用,这些应用都仅仅基于对腐败数据进行观测。