The task of face attribute manipulation has found increasing applications, but still remains challeng- ing with the requirement of editing the attributes of a face image while preserving its unique details. In this paper, we choose to combine the Variational AutoEncoder (VAE) and Generative Adversarial Network (GAN) for photorealistic image genera- tion. We propose an effective method to modify a modest amount of pixels in the feature maps of an encoder, changing the attribute strength contin- uously without hindering global information. Our training objectives of VAE and GAN are reinforced by the supervision of face recognition loss and cy- cle consistency loss for faithful preservation of face details. Moreover, we generate facial masks to en- force background consistency, which allows our training to focus on manipulating the foreground face rather than background. Experimental results demonstrate our method, called Mask-Adversarial AutoEncoder (M-AAE), can generate high-quality images with changing attributes and outperforms prior methods in detail preservation.
翻译:脸部属性操控的任务发现应用程序越来越多,但依然与编辑脸部图像属性的同时保存其独特细节的要求不相上下。在本文中,我们选择将变形自动编码器(VAE)和创形反转网络(GAN)结合,用于光真图像基因。我们提出了一个有效的方法来修改一个编码器特征图中的少量像素,在不阻碍全球信息的情况下改变属性的强度。我们VAE和GAN的训练目标通过对面部识别损失的监管和为忠实保存面部细节而丧失的细胞-细胞一致性而得到加强。此外,我们制作面部面部面部面罩,以强化背景一致性,使我们的训练能够侧重于对表面面部面部面部面部面部进行操纵,而不是背景。实验结果展示了我们被称为M-AAAE的面部自动编码(M-AAE)的方法,可以产生高质量的图像,改变属性,并超越先前的详细保存方法。