High-dimensional feature selection is a central problem in a variety of application domains such as machine learning, image analysis, and genomics. In this paper, we propose graph-based tests as a useful basis for feature selection. We describe an algorithm for selecting informative features in high-dimensional data, where each observation comes from one of $K$ different distributions. Our algorithm can be applied in a completely nonparametric setup without any distributional assumptions on the data, and it aims at outputting those features in the data, that contribute the most to the overall distributional variation. At the heart of our method is the recursive application of distribution-free graph-based tests on subsets of the feature set, located at different depths of a hierarchical clustering tree constructed from the data. Our algorithm recovers all truly contributing features with high probability, while ensuring optimal control on false-discovery. Finally, we show the superior performance of our method over other existing ones through synthetic data, and also demonstrate the utility of the method on two real-life datasets from the domains of climate change and single cell transcriptomics.
翻译:高维特征选择是各种应用领域的中心问题,例如机器学习、图像分析和基因组学。在本文中,我们提出基于图形的测试作为特征选择的有用基础。我们描述了在高维数据中选择信息特征的算法,其中每个观测都来自美元的不同分布。我们的算法可以在一个完全非参数的设置中应用,而无需对数据作任何分配假设,其目的是在数据中输出那些最有助于总体分布变化的特征。我们方法的核心是对地物集的子集进行无分布式图形测试的循环应用,该子集位于从数据中构建的分层群树的不同深度。我们的算法恢复了所有真正贡献的特征,非常有可能,同时确保对错误的发现进行最佳控制。最后,我们通过合成数据展示了我们的方法优于其他现有方法的性能,并且还展示了气候变化领域和单细胞谱集两个真实生命数据集的实用性。