High-dimensional feature selection is a central problem in a variety of application domains such as machine learning, image analysis, and genomics. In this paper, we propose graph-based tests as a useful basis for feature selection. We describe an algorithm for selecting informative features in high-dimensional data, where each observation comes from one of $K$ different distributions. Our algorithm can be applied in a completely nonparametric setup without any distributional assumptions on the data, and it aims at outputting those features in the data, that contribute the most to the overall distributional variation. At the heart of our method is the recursive application of distribution-free graph-based tests on subsets of the feature set, located at different depths of a hierarchical clustering tree constructed from the data. Our algorithm recovers all truly contributing features with high probability, while ensuring optimal control on false-discovery. Finally, we show the superior performance of our method over other existing ones through synthetic data, and also demonstrate the utility of the method on two real-life datasets from the domains of climate change and single cell transcriptomics.


翻译:高维特征选择是各种应用领域的中心问题,例如机器学习、图像分析和基因组学。在本文中,我们提出基于图形的测试作为特征选择的有用基础。我们描述了在高维数据中选择信息特征的算法,其中每个观测都来自美元的不同分布。我们的算法可以在一个完全非参数的设置中应用,而无需对数据作任何分配假设,其目的是在数据中输出那些最有助于总体分布变化的特征。我们方法的核心是对地物集的子集进行无分布式图形测试的循环应用,该子集位于从数据中构建的分层群树的不同深度。我们的算法恢复了所有真正贡献的特征,非常有可能,同时确保对错误的发现进行最佳控制。最后,我们通过合成数据展示了我们的方法优于其他现有方法的性能,并且还展示了气候变化领域和单细胞谱集两个真实生命数据集的实用性。

0
下载
关闭预览

相关内容

特征选择( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ),或属性选择( Attribute Selection )。是指从已有的M个特征(Feature)中选择N个特征使得系统的特定指标最优化,是从原始特征中选择出一些最有效特征以降低数据集维度的过程,是提高学习算法性能的一个重要手段,也是模式识别中关键的数据预处理步骤。对于一个学习算法来说,好的学习样本是训练模型的关键。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月17日
Arxiv
0+阅读 · 2023年3月14日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员