Body weight, as an essential physiological trait, is of considerable significance in many applications like body management, rehabilitation, and drug dosing for patient-specific treatments. Previous works on the body weight estimation task are mainly vision-based, using 2D/3D, depth, or infrared images, facing problems in illumination, occlusions, and especially privacy issues. The pressure mapping mattress is a non-invasive and privacy-preserving tool to obtain the pressure distribution image over the bed surface, which strongly correlates with the body weight of the lying person. To extract the body weight from this image, we propose a deep learning-based model, including a dual-branch network to extract the deep features and pose features respectively. A contrastive learning module is also combined with the deep-feature branch to help mine the mutual factors across different postures of every single subject. The two groups of features are then concatenated for the body weight regression task. To test the model's performance over different hardware and posture settings, we create a pressure image dataset of 10 subjects and 23 postures, using a self-made pressure-sensing bedsheet. This dataset, which is made public together with this paper, together with a public dataset, are used for the validation. The results show that our model outperforms the state-of-the-art algorithms over both 2 datasets. Our research constitutes an important step toward fully automatic weight estimation in both clinical and at-home practice. Our dataset is available for research purposes at: https://github.com/USTCWzy/MassEstimation.
翻译:身体重量作为一项重要的生理特征,在许多应用场景中具有重要意义,例如身体管理、康复和特定患者药物剂量的施用。以往的体重评估任务主要是基于视觉的,使用2D/3D、深度或红外图像等,面临光照、遮挡,特别是隐私问题等问题。压力传感床垫是一种非侵入性和隐私保护工具,可以获取铺床面的压力分布图像,它与躺着的人的身体重量密切相关。为了从这个图像中提取体重,我们提出了一种基于深度学习的模型,包括双分支网络,分别提取深度特征和姿态特征。对于深度特征分支,还结合了对比学习模块,帮助挖掘每个单个主体的不同姿势之间的共同因素。然后将这两组特征进行拼接,用于体重回归任务。为了测试该模型在不同硬件和姿势设置下的性能,我们使用自制的压力传感床单创建了一个包含10个受试者和23个姿势的压力图像数据集。这个数据集与本文一起公开,并与公共数据集一起用于验证。结果显示,我们的模型在这两个数据集上都优于现有技术方法。我们的研究是实现将自动化体重评估应用于临床和家庭实践的重要一步。我们的数据集可供研究目的使用:https://github.com/USTCWzy/MassEstimation。