A notable challenge in Electric Vehicle (EV) charging is the time required to fully charge the battery, which can range from 15 minutes to 2-3 hours. This idle period, however, presents an opportunity to offer time-consuming or data-intensive services such as vehicular software updates. ISO 15118 referred to the concept of Value-Added Services (VAS) in the charging scenario, but it remained underexplored in the literature. Our paper addresses this gap by proposing \acronym, the first EV charger compute architecture that supports secure on-charger universal applications with upstream and downstream communication. The architecture covers the end-to-end hardware/software stack, including standard API for vehicles and IT infrastructure. We demonstrate the feasibility and advantages of \acronym by employing and evaluating three suggested value-added services: vehicular software updates, security information and event management (SIEM), and secure payments. The results demonstrate significant reductions in bandwidth utilization and latency, as well as high throughput, which supports this novel concept and suggests a promising business model for Electric Vehicle charging station operation.
翻译:暂无翻译