The 2D Euler equations are a simple but rich set of non-linear PDEs that describe the evolution of an ideal inviscid fluid, for which one dimension is negligible. Solving numerically these equations can be extremely demanding. Several techniques to obtain fast and accurate simulations have been developed during the last decades. In this paper, we present a novel approach which combines recent developments in the stochastic model reduction and conservative semi-discretization of the Euler equations. In particular, starting from the Zeitlin model on the 2-sphere, we derive reduced dynamics for large scales and we close the equations either deterministically or with a suitable stochastic term. Numerical experiments show that, after an initial turbulent regime, the influence of small scales to large scales is negligible, even though a non-zero transfer of energy among different modes is present.
翻译:2D Euler 方程式是一套简单而丰富的非线性PDE, 描述一种理想的隐形液体的演变过程, 其中一个维度可忽略不计。 从数字上解决这些方程式可能要求极高。 在过去几十年里, 已经开发了几种快速和准确的模拟技术。 在本文中, 我们提出了一个新颖的方法, 将蒸汽模型减少和保守的Euler 方程式半分解性的最新发展结合起来。 特别是, 从2- spere 的Zeitlin 模型开始, 我们从大尺度上产生减少的动态, 我们要么以确定性的方式, 要么以适当的随机术语关闭这些方程式。 数字实验显示, 在最初的动荡状态下, 小尺度对大尺度的影响是微不足道的, 即使存在不同模式之间的非零能源转移。