Distributed optimization with open collaboration is a popular field since it provides an opportunity for small groups/companies/universities, and individuals to jointly solve huge-scale problems. However, standard optimization algorithms are fragile in such settings due to the possible presence of so-called Byzantine workers -- participants that can send (intentionally or not) incorrect information instead of the one prescribed by the protocol (e.g., send anti-gradient instead of stochastic gradients). Thus, the problem of designing distributed methods with provable robustness to Byzantine workers has been receiving a lot of attention recently. In particular, several works consider a very promising way to achieve Byzantine tolerance via exploiting variance reduction and robust aggregation. The existing approaches use SAGA- and SARAH-type variance-reduced estimators, while another popular estimator -- SVRG -- is not studied in the context of Byzantine-robustness. In this work, we close this gap in the literature and propose a new method -- Byzantine-Robust Loopless Stochastic Variance Reduced Gradient (BR-LSVRG). We derive non-asymptotic convergence guarantees for the new method in the strongly convex case and compare its performance with existing approaches in numerical experiments.


翻译:公开合作的分散优化是一个广受欢迎的领域,因为它为小群体/公司/大学和个人提供了一个共同解决大规模问题的机会。然而,标准优化算法在这种环境下很脆弱,因为可能存在所谓的拜占庭工人 -- -- 参加者可以(有意或不)发送不正确信息,而不是议定书规定的信息(例如,发送抗偏向性信息,而不是蒸发性梯度)。因此,设计分布式方法,向拜占庭工人提供可察觉的稳健性,这个问题最近引起了人们的极大关注。特别是,一些工作认为,通过利用差异减少和强力聚合实现拜占庭容忍的方法非常有希望。现有方法使用SAGA-和SAAH型差异影响估计器,而另一个受欢迎的估计器 -- -- SVRG -- -- 并不是在Byzantine-robtystemrobty 中研究。在这项工作中,我们弥合了文献中的这一差距,并提出一种新的方法 -- -- Byzantine-Robet Looptrost-stoptrain commational-commiss commissional-commissional developtragres gravial degravial graviquest graviquest graviquest graviquest graviquest rogradust gradust gravical gravicalgis) 方法。</s>

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
【2022新书】机器学习中的统计建模:概念和应用,398页pdf
专知会员服务
141+阅读 · 2022年11月5日
专知会员服务
45+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员