In this paper, we study dimension reduction techniques for large-scale controlled stochastic differential equations (SDEs). The drift of the considered SDEs contains a polynomial term satisfying a one-sided growth condition. Such nonlinearities in high dimensional settings occur, e.g., when stochastic reaction diffusion equations are discretized in space. We provide a brief discussion around existence, uniqueness and stability of solutions. (Almost) stability then is the basis for new concepts of Gramians that we introduce and study in this work. With the help of these Gramians, dominant subspace are identified leading to a balancing related highly accurate reduced order SDE. We provide an algebraic error criterion and an error analysis of the propose model reduction schemes. The paper is concluded by applying our method to spatially discretized reaction diffusion equations.
翻译:在本文中,我们研究了大规模受控蒸气差异方程式的减少维度技术。考虑的SDE的漂移包含一个多元术语,满足片面增长条件。在高维环境中出现这种非线性,例如,在空间中分离时出现这种非线性反应扩散方程式。我们简要地讨论了解决方案的存在、独特性和稳定性。(近些)稳定性是我们在此工作中介绍和研究的格拉米亚人新概念的基础。在这些格拉米亚人的帮助下,主要次空间被确定为能够平衡相关的高度精确的减少SDE顺序。我们提供了一个代数错误标准,并对拟议的模型减少方案进行了错误分析。通过将我们的方法应用于空间离散反应扩散方程式而得出了论文的结论。</s>