In this paper, we propose an efficient quantum algorithm for solving nonlinear stochastic differential equations (SDE) via the associated Fokker-Planck equation (FPE). We discretize FPE in space and time using the Chang-Cooper scheme, and compute the solution of the resulting system of linear equations using the quantum linear systems algorithm. The Chang-Cooper scheme is second order accurate and satisfies conservativeness and positivity of the solution. We present detailed error and complexity analyses that demonstrate that our proposed quantum scheme, which we call the Quantum Linear Systems Chang-Cooper Algorithm (QLSCCA), computes the solution to the FPE within prescribed $\epsilon$ error bounds with polynomial dependence on state dimension $d$. Classical numerical methods scale exponentially with dimension, thus, our approach provides an \emph{exponential speed-up} over traditional approaches.
翻译:在本文中,我们提出一个高效的量子算法,通过相关的Fokker-Planck等式(FPE)解决非线性随机差异方程式(SDE ) 。 我们使用 Chang-Cooper 方案在空间和时间上将FPE分离出来,并使用量子线性系统算法计算由此形成的线性方程式的解决方案。 Chang-Cooper 方案是第二顺序的准确性和满足解决方案的保守性和相对性。我们提出了详细的错误和复杂分析,表明我们提议的量子方案(我们称之为Quantum Linear Systems Chang-Cooper Algorithm (QLSCA)),在规定的$\epsolon$的误差范围内将FPE的解算出FPE的解决方案,该误差以国家维度为多元依赖值为$d$。因此,我们的方法提供了对传统方法的 empph{exentent-upt}</s>