We consider the problem of counting 4-cycles ($C_4$) in a general undirected graph $G$ of $n$ vertices and $m$ edges (in bipartite graphs, 4-cycles are also often referred to as $\textit{butterflies}$). There have been a number of previous algorithms for this problem; some of these are based on fast matrix multiplication, which is attractive theoretically but not practical, and some of these are based on randomized hash tables. We develop a new simpler algorithm for counting $C_4$, which has several practical improvements over previous algorithms; for example, it is fully deterministic and avoids any expensive arithmetic in its inner loops. The algorithm can also be adapted to count 4-cycles incident to each vertex and edge. Our algorithm runs in $O(m\bar\delta(G))$ time and $O(n)$ space, where $\bar \delta(G) \leq O(\sqrt{m})$ is the $\textit{average degeneracy}$ parameter introduced by Burkhardt, Faber & Harris (2020).


翻译:我们考虑在一般的非方向图形中计算4周期(C_4美元)的问题(在两边的图表中,4周期也常常被称为$\textit{butflies}$ ) 。 这个问题以前有一些算法; 其中一些算法基于快速矩阵乘法, 它在理论上具有吸引力, 但并不实用, 其中一些是以随机散列表格为基础的。 我们为计算$C_ 4美元制定了一个新的更简单的算法, 它比以前的算法有几项实际改进; 例如, 它完全具有确定性, 避免了内部循环中任何昂贵的算术。 算法也可以根据每个顶端和边缘来计算4周期事件。 我们的算法运行在$O( m\bar\delta(G)) 时间和$O(n), 其中, $\bar\ delta(G)\ leq O(sq) (sqrt{m) $, 它比以前的算法有几种实际改进; 例如, 它完全具有确定性, 避免了内部循环中任何昂贵的算术。 该算法也可以根据每个顶值来计算4周期事件和边缘值(20美元) 。 我们的参数运行运行运行运行用$(m) 。</s>

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
43+阅读 · 2022年2月19日
专知会员服务
75+阅读 · 2021年3月16日
专知会员服务
123+阅读 · 2020年9月8日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月1日
Arxiv
0+阅读 · 2023年4月30日
Arxiv
0+阅读 · 2023年4月29日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
VIP会员
相关VIP内容
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
43+阅读 · 2022年2月19日
专知会员服务
75+阅读 · 2021年3月16日
专知会员服务
123+阅读 · 2020年9月8日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员