We provide a new approach for compiling quantum simulation circuits that appear in Trotter, qDRIFT and multi-product formulas to Clifford and non-Clifford operations that can reduce the number of non-Clifford operations by a factor of up to $4$. In fact, the total number of gates reduce in many cases. We show that it is possible to implement an exponentiated sum of commuting Paulis with at most $m$ (controlled)-rotation gates, where $m$ is the number of distinct non-zero eigenvalues (ignoring sign). Thus we can collect mutually commuting Hamiltonian terms into groups that satisfy one of several symmetries identified in this work which allow an inexpensive simulation of the entire group of terms. We further show that the cost can in some cases be reduced by partially allocating Hamiltonian terms to several groups and provide a polynomial time classical algorithm that can greedily allocate the terms to appropriate groupings. We further specifically discuss these optimizations for the case of fermionic dynamics and provide extensive numerical simulations for qDRIFT of our grouping strategy to 6 and 4-qubit Heisenberg models, $LiH$, $H_2$ and observe a factor of 1.8-3.2 reduction in the number of non-Clifford gates. This suggests Trotter-based simulation of chemistry in second quantization may be even more practical than previously believed.


翻译:我们提供了一种新的方法,用于汇编在Trotter、qDRIFT和多产品公式中出现的量子模拟电路,这些电路出现在克里福德和非克利福德操作中,可以将非克利福德操作的数量减少高达4美元的系数。事实上,在许多情况下,门的总数会减少许多。我们表明,可以实施一种推算式总和,即用最多(受控)美元对保罗斯进行通勤,甚至以美元(调控)旋转门为单位,在那里,美元是不同的非零电子价值的数量(点火标志)。因此,我们可以将汉密尔顿术语相互通缩入能够满足这项工作中确定的若干对称的组合之一,这样可以使整个术语组的模拟费用便宜。我们进一步表明,在某些情况下,可以将汉密尔顿术语部分分配给几个组,提供一种可以贪婪地将术语分配给适当集团的多时制算法。我们还具体讨论了这些优化的超度动态案例,并在以前为4DRIF-H 和4 美元的递减系数组中提供了广泛的数字模拟。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
26+阅读 · 2023年1月5日
Arxiv
24+阅读 · 2021年1月25日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员