Submodular maximization is one of the central topics in combinatorial optimization. It has found numerous applications in the real world. In the past decades, a series of algorithms have been proposed for this problem. However, most of the state-of-the-art algorithms are randomized. There remain non-negligible gaps with respect to approximation ratios between deterministic and randomized algorithms in submodular maximization. In this paper, we propose deterministic algorithms with improved approximation ratios for non-monotone submodular maximization. Specifically, for the matroid constraint, we provide a deterministic $0.283-o(1)$ approximation algorithm, while the previous best deterministic algorithm only achieves a $1/4$ approximation ratio. For the knapsack constraint, we provide a deterministic $1/4$ approximation algorithm, while the previous best deterministic algorithm only achieves a $1/6$ approximation ratio. For the linear packing constraints with large widths, we provide a deterministic $1/6-\epsilon$ approximation algorithm. To the best of our knowledge, there is currently no deterministic approximation algorithm for the constraints.


翻译:子模型最大化问题是组合优化中的一个中心话题。它已经在实际应用中找到了许多应用。在过去的几十年中,已经提出了许多算法来解决这个问题。然而,大多数最先进的算法都是随机的。在子模型最大化中,确定性算法和随机化算法之间的近似度存在非常大的差距。在本文中,我们针对非单调子模型最大化问题提出了改进的确定性算法,达到了更好的近似精度。具体来说,对于拟阵约束,我们提供了一个确定性的$0.283-o(1)$近似算法,而以前最好的确定性算法只能达到$1/4$的近似度。对于背包约束,我们提供了一个确定性的$1/4$近似算法,而以前最好的确定性算法只能达到$1/6$的近似度。对于具有较大宽度的线性填充约束,我们提供一个确定性的$1/6-\epsilon$近似算法。据我们所知,目前还没有确定性逼近算法可以解决这些约束条件。

0
下载
关闭预览

相关内容

神经网络数学基础,45页ppt
专知会员服务
82+阅读 · 2023年5月7日
专知会员服务
13+阅读 · 2021年10月12日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
专知会员服务
44+阅读 · 2020年12月18日
强化学习和最优控制的《十个关键点》81页PPT汇总
专知会员服务
105+阅读 · 2020年3月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月17日
VIP会员
相关VIP内容
神经网络数学基础,45页ppt
专知会员服务
82+阅读 · 2023年5月7日
专知会员服务
13+阅读 · 2021年10月12日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
专知会员服务
44+阅读 · 2020年12月18日
强化学习和最优控制的《十个关键点》81页PPT汇总
专知会员服务
105+阅读 · 2020年3月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员