Image-based virtual try-on is one of the most promising applications of human-centric image generation due to its tremendous real-world potential. In this work, we take a step forwards to explore versatile virtual try-on solutions, which we argue should possess three main properties, namely, they should support unsupervised training, arbitrary garment categories, and controllable garment editing. To this end, we propose a characteristic-preserving end-to-end network, the PAtch-routed SpaTially-Adaptive GAN++ (PASTA-GAN++), to achieve a versatile system for high-resolution unpaired virtual try-on. Specifically, our PASTA-GAN++ consists of an innovative patch-routed disentanglement module to decouple the intact garment into normalized patches, which is capable of retaining garment style information while eliminating the garment spatial information, thus alleviating the overfitting issue during unsupervised training. Furthermore, PASTA-GAN++ introduces a patch-based garment representation and a patch-guided parsing synthesis block, allowing it to handle arbitrary garment categories and support local garment editing. Finally, to obtain try-on results with realistic texture details, PASTA-GAN++ incorporates a novel spatially-adaptive residual module to inject the coarse warped garment feature into the generator. Extensive experiments on our newly collected UnPaired virtual Try-on (UPT) dataset demonstrate the superiority of PASTA-GAN++ over existing SOTAs and its ability for controllable garment editing.
翻译:基于图像的虚拟试演是人类中心图像生成的最有希望的应用之一,因为它具有巨大的现实世界潜力。 在这项工作中,我们向前迈出了一步,探索多功能虚拟试演解决方案,我们认为,这些解决方案应该具有三大特性,即:它们应当支持未经监督的培训、任意的服装类别和可控的服装编辑。为此,我们提议了一个维护端对端的特质网络,即Patchrout-routed Spatialy-Adaptial GAN++(PASTA-GAN++),以建立一个高分辨率的未受轻度虚拟试演练的多功能系统。具体地说,我们的PASTA-GAN++是一个创新的修饰式脱节式脱钩模块,将整齐的服装分解成正常的修饰。这可以保留服装样式信息,同时消除服装空间信息,从而缓解在非超超超常的训练中出现的过度问题。此外,PASTA-GAN++(PA-A)引入了基于补制式的服装代表制制制式的服装和配对口制合成块,允许它处理任意的服装类别,从而将任意的服装和升级的SATADAS-RADA的升级的升级的升级的升级的校正的校正的校服改。最后的校。最后的校。最后的制的校服改。