Existing deep learning real denoising methods require a large amount of noisy-clean image pairs for supervision. Nonetheless, capturing a real noisy-clean dataset is an unacceptable expensive and cumbersome procedure. To alleviate this problem, this work investigates how to generate realistic noisy images. Firstly, we formulate a simple yet reasonable noise model that treats each real noisy pixel as a random variable. This model splits the noisy image generation problem into two sub-problems: image domain alignment and noise domain alignment. Subsequently, we propose a novel framework, namely Pixel-level Noise-aware Generative Adversarial Network (PNGAN). PNGAN employs a pre-trained real denoiser to map the fake and real noisy images into a nearly noise-free solution space to perform image domain alignment. Simultaneously, PNGAN establishes a pixel-level adversarial training to conduct noise domain alignment. Additionally, for better noise fitting, we present an efficient architecture Simple Multi-scale Network (SMNet) as the generator. Qualitative validation shows that noise generated by PNGAN is highly similar to real noise in terms of intensity and distribution. Quantitative experiments demonstrate that a series of denoisers trained with the generated noisy images achieve state-of-the-art (SOTA) results on four real denoising benchmarks. Part of codes, pre-trained models, and results are available at https://github.com/caiyuanhao1998/PNGAN for comparisons.
翻译:现有深层学习真实的去化方法要求大量的噪音清洁图像来进行监督。然而,捕捉真正的噪音清洁数据集是一个令人无法接受的昂贵和繁琐的程序。为了缓解这一问题,这项工作调查了如何生成现实的噪音图像。首先,我们开发了一个简单而合理的噪音模型,将每个真正的噪音像素作为随机变数来对待。这个模型将噪音图像生成问题分为两个子问题:图像域对齐和噪音域对齐。随后,我们提议了一个新框架,即像素级的噪音和觉醒基因突变Adversarial网络(PNGANAN ) 。PNGAN 使用一个经过预先训练的真正的调音器,将假的和真实的噪音映射成一个几乎没有噪音的解决方案空间来进行图像区域对齐。同时,PNGAN 建立了一个像素级的对抗性训练训练,进行噪音调整。此外,为了更好地适应噪音,我们提出了一个有效的结构简单多尺度网络(SMNet)作为发电机。 定性验证显示,PNGAN产生的噪音与真实的噪音在激烈度和高压性模型的分布上非常相似。