We develop a randomized algorithm (that succeeds with high probability) for generating an $\epsilon$-net in a sphere of dimension n. The basic scheme is to pick $O(n \ln(1/n) + \ln(1/\delta))$ random rotations and take all possible words of length $O(n \ln(1/\epsilon))$ in the same alphabet and act them on a fixed point. We show this set of points is equidistributed at a scale of $\epsilon$. Our main application is to approximate integration of Lipschitz functions over an n-sphere.
翻译:我们为在维度范围内生成 $\ epsilon$- net 开发一种随机算法( 概率高, 成功率高) 。 基本方案是选择 $( n = ln( 1/ n) + \ ln( 1/\ delta)) $ 随机旋转, 并使用同一字母中所有长度的单词 $( n \ ln( 1/\ epsilon)), 并在固定点上操作。 我们显示这组点的分布比例是 $\ epsilon 。 我们的主要应用是将 Lipschitz 函数大致整合到 n- sphere 上 。