We consider sparse estimation of a class of high-dimensional spatio-temporal models. Unlike classical spatial autoregressive models, we do not rely on a predetermined spatial interaction matrix. Instead, under the assumption of sparsity, we estimate the relationships governing both the spatial and temporal dependence in a fully data-driven way by penalizing a set of Yule-Walker equations. While this regularization can be left unstructured, we also propose a customized form of shrinkage to further exploit diagonally structured forms of sparsity that follow intuitively when observations originate from spatial grids such as satellite images. We derive finite sample error bounds for this estimator, as well estimation consistency in an asymptotic framework wherein the sample size and the number of spatial units diverge jointly. A simulation exercise shows strong finite sample performance compared to competing procedures. As an empirical application, we model satellite measured NO2 concentrations in London. Our approach delivers forecast improvements over a competitive benchmark and we discover evidence for strong spatial interactions between sub-regions.
翻译:我们考虑的是一个高维时空模型种类少见的估算。 与经典的空间自动递减模型不同, 我们并不依赖于一个预先确定的空间互动矩阵。 相反, 在宽度的假设下, 我们通过惩罚一套Yule- Walker方程式, 以完全数据驱动的方式估计关于空间和时间依赖的关系。 虽然这种正规化可以不进行结构化, 我们还提议一种定制的缩缩缩形式, 以进一步利用从卫星图像等空间网格观测产生的直觉结构形式的聚变。 我们为这个估计仪得出有限的样本误差, 并在一个以样本大小和空间单位数量相异的单一测试框架中估算一致性。 模拟练习显示与竞争程序相比, 强的有限样本性性能。 作为实验应用, 我们模拟卫星测量了伦敦的NO2浓度。 我们的方法预测了在有竞争力的基准上取得的改进, 我们发现分区域之间强大的空间互动的证据。