Nonnegative matrix factorization arises widely in machine learning and data analysis. In this paper, for a given factorization of rank r, we consider the sparse stochastic matrix factorization (SSMF) of decomposing a prescribed m-by-n stochastic matrix V into a product of an m-by-r stochastic matrix W and an r-by-n stochastic matrix H, where both W and H are required to be sparse. With the prescribed sparsity level, we reformulate the SSMF as an unconstrained nonconvex-nonsmooth minimization problem and introduce a column-wise update algorithm for solving the minimization problem. We show that our algorithm converges globally. The main advantage of our algorithm is that the generated sequence converges to a special critical point of the cost function, which is nearly a global minimizer over each column vector of the W-factor and is a global minimizer over the H-factor as a whole if there is no sparsity requirement on H. Numerical experiments on both synthetic and real data sets are given to demonstrate the effectiveness of our proposed algorithm.
翻译:在机器学习和数据分析中,出现了广泛的非阴性矩阵因子化。在本文中,对于等级 r 的某个特定因子化,我们认为将规定的m- by- schochistic 矩阵V分解成一个 m- by- schochistic 矩阵 W 和 r- by- stochatic 矩阵H 的产物的稀少的随机矩阵因子化因子化(SSMF),要求W 和 H 的均稀释。在规定的宽度水平上,我们把SSMF重新组合成一个未受限制的非conx- nonsmoot moot 最小化问题,并引入了一种解决最小化问题的分栏式更新算法。我们表明我们的算法会汇集全球。我们算法的主要优点是,产生的序列会汇合成本函数的一个特殊临界点,即几乎是W- factor的每个柱矢量上的全球最小化器,如果H没有关于合成和真实数据集的神经性要求,则会显示我们提议的算法的有效性。