We study one of the key tools in data approximation and optimization: low-discrepancy colorings. Formally, given a finite set system $(X,\mathcal S)$, the \emph{discrepancy} of a two-coloring $\chi:X\to\{-1,1\}$ is defined as $\max_{S \in \mathcal S}|{\chi(S)}|$, where $\chi(S)=\sum\limits_{x \in S}\chi(x)$. We propose a randomized algorithm which, for any $d>0$ and $(X,\mathcal S)$ with dual shatter function $\pi^*(k)=O(k^d)$, returns a coloring with expected discrepancy $O\left({\sqrt{|X|^{1-1/d}\log|\mathcal S|}}\right)$ (this bound is tight) in time $\tilde O\left({|\mathcal S|\cdot|X|^{1/d}+|X|^{2+1/d}}\right)$, improving upon the previous-best time of $O\left(|\mathcal S|\cdot|X|^3\right)$ by at least a factor of $|X|^{2-1/d}$ when $|\mathcal S|\geq|X|$. This setup includes many geometric classes, families of bounded dual VC-dimension, and others. As an immediate consequence, we obtain an improved algorithm to construct $\varepsilon$-approximations of sub-quadratic size. Our method uses primal-dual reweighing with an improved analysis of randomly updated weights and exploits the structural properties of the set system via matchings with low crossing number -- a fundamental structure in computational geometry. In particular, we get the same $|X|^{2-1/d}$ factor speed-up on the construction time of matchings with crossing number $O\left({|X|^{1-1/d}}\right)$, which is the first improvement since the 1980s. The proposed algorithms are very simple, which makes it possible, for the first time, to compute colorings with near-optimal discrepancies and near-optimal sized approximations for abstract and geometric set systems in dimensions higher than $2$.


翻译:我们在数据近似和优化中研究一个关键工具 : 低偏差的颜色。 形式上, 我们提出一个随机化的算法, 对于任何固定的系统 $( X,\ mathcal S) 美元, 双色的 $\\\\ x\\ -1, 1\\\ 美元, 定义为$( masx) S\\\ mathcal S\\\ chi( S) 美元, 其中 $( s) supplex =x discriblex 。 对于任何固定的系统 $( X) 美元和 $( X) 美元, 以双倍的破坏功能 $( k) = O( kdd) 美元, 返回一个预期的差异 $( left) ( xrqr_ _) 1\ droqr) 美元 的颜色 。 在时间上, 以 美元- 美元- 美元 美元-\\\\\\\\\\ r\ 美元( laxxx_ lax) roisal_ a roup max rox roisl roisl) roism roism 。 roism i) 。 rox roism i i) i i i) i i i i, i i i i), i i i i i i, i i 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月17日
Arxiv
0+阅读 · 2022年10月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员