Manifold learning is a fundamental problem in machine learning with numerous applications. Most of the existing methods directly learn the low-dimensional embedding of the data in some high-dimensional space, and usually lack the flexibility of being directly applicable to down-stream applications. In this paper, we propose the concept of implicit manifold learning, where manifold information is implicitly obtained by learning the associated heat kernel. A heat kernel is the solution of the corresponding heat equation, which describes how "heat" transfers on the manifold, thus containing ample geometric information of the manifold. We provide both practical algorithm and theoretical analysis of our framework. The learned heat kernel can be applied to various kernel-based machine learning models, including deep generative models (DGM) for data generation and Stein Variational Gradient Descent for Bayesian inference. Extensive experiments show that our framework can achieve state-of-the-art results compared to existing methods for the two tasks.
翻译:使用多种应用的机器学习是一个根本性问题。 大部分现有方法直接了解数据在某些高维空间的低维嵌入,通常缺乏直接适用于下流应用的灵活性。 在本文中,我们提出了隐含多重学习的概念,即通过学习相关的热内核间接获得多种信息。热内核是相应的热方程式的解决方案,它描述了如何在元件上进行“热”传输,从而包含充分的方块几何信息。我们提供了我们框架的实用算法和理论分析。所学的热内核可以应用到各种内核的机器学习模型,包括数据生成的深基因模型和巴伊西亚人推断的斯坦·沃里特恩特源。 广泛的实验表明,我们的框架可以实现与两种任务现有方法相比的最新结果。