Local feature matching is challenging due to textureless and repetitive patterns. Existing methods focus on using appearance features and global interaction and matching, while the importance of geometry priors in local feature matching has not been fully exploited. Different from these methods, in this paper, we delve into the importance of geometry prior and propose Structured Epipolar Matcher (SEM) for local feature matching, which can leverage the geometric information in an iterative matching way. The proposed model enjoys several merits. First, our proposed Structured Feature Extractor can model the relative positional relationship between pixels and high-confidence anchor points. Second, our proposed Epipolar Attention and Matching can filter out irrelevant areas by utilizing the epipolar constraint. Extensive experimental results on five standard benchmarks demonstrate the superior performance of our SEM compared to state-of-the-art methods. Project page: https://sem2023.github.io.
翻译:----
本文摘要:
由于纹理模糊和重复模式等问题,局部特征匹配具有一定挑战性。现有方法注重利用外观特征和全局交互进行匹配,但在局部特征匹配中几何先验的重要性还没有得到充分发挥。与这些方法不同的是,本文探讨了几何先验的重要性,并提出了一种结构化极线匹配器(SEM)进行局部特征匹配,该方法可以利用迭代匹配方式中的几何信息。提出的模型具有以下优点。首先,我们的提出的结构特征提取器可以模拟像素和高置信度锚点之间的相对位置关系。其次,我们提出的极线注意力和匹配方法可以利用极线约束来过滤掉不相关的区域。针对五个标准基准进行的广泛实验结果表明,本文提出的SEM方法在性能上显著优于现有最先进方法。项目页面: https://sem2023.github.io。