Image-Text Retrieval (ITR) is essentially a ranking problem. Given a query caption, the goal is to rank candidate images by relevance, from large to small. The current ITR datasets are constructed in a pairwise manner. Image-text pairs are annotated as positive or negative. Correspondingly, ITR models mainly use pairwise losses, such as triplet loss, to learn to rank. Pairwise-based ITR increases positive pair similarity while decreasing negative pair similarity indiscriminately. However, the relevance between dissimilar negative pairs is different. Pairwise annotations cannot reflect this difference in relevance. In the current datasets, pairwise annotations miss many correlations. There are many potential positive pairs among the pairs labeled as negative. Pairwise-based ITR can only rank positive samples before negative samples, but cannot rank negative samples by relevance. In this paper, we integrate listwise ranking into conventional pairwise-based ITR. Listwise ranking optimizes the entire ranking list based on relevance scores. Specifically, we first propose a Relevance Score Calculation (RSC) module to calculate the relevance score of the entire ranked list. Then we choose the ranking metric, Normalized Discounted Cumulative Gain (NDCG), as the optimization objective. We transform the non-differentiable NDCG into a differentiable listwise loss, named Smooth-NDCG (S-NDCG). Our listwise ranking approach can be plug-and-play integrated into current pairwise-based ITR models. Experiments on ITR benchmarks show that integrating listwise ranking can improve the performance of current ITR models and provide more user-friendly retrieval results. The code is available at https://github.com/AAA-Zheng/Listwise_ITR.


翻译:暂无翻译

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
21+阅读 · 2020年10月11日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
12+阅读 · 2020年6月20日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员