It is known that unsupervised nonlinear dimensionality reduction and clustering is sensitive to the selection of hyperparameters, particularly for deep learning based methods, which hinders its practical use. How to select a proper network structure that may be dramatically different in different applications is a hard issue for deep models, given little prior knowledge of data. In this paper, we aim to automatically determine the optimal network structure of a deep model, named multilayer bootstrap networks (MBN), via simple ensemble learning and selection techniques. Specifically, we first propose an MBN ensemble (MBN-E) algorithm which concatenates the sparse outputs of a set of MBN base models with different network structures into a new representation. Then, we take the new representation produced by MBN-E as a reference for selecting the optimal MBN base models. Moreover, we propose a fast version of MBN-E (fMBN-E), which is not only theoretically even faster than a single standard MBN but also does not increase the estimation error of MBN-E. Importantly, MBN-E and its ensemble selection techniques maintain the simple formulation of MBN that is based on one-nearest-neighbor learning. Empirically, comparing to a number of advanced deep clustering methods and as many as 20 representative unsupervised ensemble learning and selection methods, the proposed methods reach the state-of-the-art performance without manual hyperparameter tuning. fMBN-E is empirically even hundreds of times faster than MBN-E without suffering performance degradation. The applications to image segmentation and graph data mining further demonstrate the advantage of the proposed methods.


翻译:众所周知, 未经监督的非线性维维度减少和集群对于选择超参数非常敏感, 特别是对于深学习方法而言, 这有碍于其实际使用。 如何选择在不同应用中可能截然不同的适当网络结构对于深层模型来说是一个棘手的问题, 因为以前对数据缺乏了解。 在本文中, 我们的目标是通过简单的联合学习和选择技术, 自动确定深层模型的最佳网络结构, 名为多层靴子网( MBN) 的最佳网络结构。 具体地说, 我们首先提议 MBN 集成( MBN- E) 算法, 将一组具有不同网络结构的 MBN 基模型的稀少输出转化为新的代表。 然后, 我们把 MBN- E 生成的新代表制作为选择最佳 MBN 基模型的参考。 此外, 我们提出一个快速版本的MBN- E (fMBN- E), 它不仅在理论上比单一的标准MBN- E 还要快, 而且不会增加 MBN- E 的估算错误。 MBN- E 及其精度选择方法的精度比 的精度, 的精度 的精度比 的精度 的精度 的精度 的精度 的精度比 的精度 的精度 的精度 的精度 的精度 的精度 的精度 的精度 的精度 的精度 的精度 的精度 的精度 的精度 的精度 的精度 的精度 的精度 的精度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 的 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度 度

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月14日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员