This article presents a three-step framework for learning and solving partial differential equations (PDEs) using kernel methods. Given a training set consisting of pairs of noisy PDE solutions and source/boundary terms on a mesh, kernel smoothing is utilized to denoise the data and approximate derivatives of the solution. This information is then used in a kernel regression model to learn the algebraic form of the PDE. The learned PDE is then used within a kernel based solver to approximate the solution of the PDE with a new source/boundary term, thereby constituting an operator learning framework. The proposed method is mathematically interpretable and amenable to analysis, and convenient to implement. Numerical experiments compare the method to state-of-the-art algorithms and demonstrate its superior performance on small amounts of training data and for PDEs with spatially variable coefficients.
翻译:本条提出了使用内核方法学习和解决部分差异方程式(PDEs)的三步框架。考虑到由一对吵闹的PDE解决方案和网状的源/界术语组成的培训组合,使用内核平滑来淡化该解决方案的数据和近似衍生物。该信息随后用于内核回归模型,以学习PDE的代谢形式。随后,在以内核为基础的求解器中使用所学到的PDE,以新的源/界词来接近PDE的解决方案,从而形成一个操作者学习框架。拟议方法在数学上可以解释,便于分析,便于实施。数字实验将方法与最新算法进行比较,并展示其在少量培训数据和具有空间可变系数的PDE的优异性表现。