Network data are often sampled with auxiliary information or collected through the observation of a complex system over time, leading to multiple network snapshots indexed by a continuous variable. Many methods in statistical network analysis are traditionally designed for a single network, and can be applied to an aggregated network in this setting, but that approach can miss important functional structure. Here we develop an approach to estimating the expected network explicitly as a function of a continuous index, be it time or another indexing variable. We parameterize the network expectation through low dimensional latent processes, whose components we represent with a fixed, finite-dimensional functional basis. We derive a gradient descent estimation algorithm, establish theoretical guarantees for recovery of the low-dimensional structure, compare our method to competitors, and apply it to a dataset of international political interactions over time, showing our proposed method to adapt well to data, outperform competitors, and provide interpretable and meaningful results.
翻译:网络数据往往与辅助信息进行抽样,或通过对一个复杂系统的观察而收集,导致多个网络快照以连续变量为索引。统计网络分析中的许多方法传统上是为单一网络设计的,在这种环境下可以适用于一个综合网络,但这种方法可能错过重要的功能结构。我们在这里开发了一种方法,将预期网络明确作为持续指数的函数来估计,无论是时间还是另一个指数变量。我们通过低维潜伏过程来参数化网络的预期,其组成部分由固定的、有限的功能基础组成。我们得出梯度下限估计算法,为恢复低维结构建立理论保证,将我们的方法与竞争者进行比较,并将它应用到一段时间内国际政治互动的数据集中,展示我们提议的适应数据、优于竞争者的方法,并提供可解释和有意义的结果。