Network data are often sampled with auxiliary information or collected through the observation of a complex system over time, leading to multiple network snapshots indexed by a continuous variable. Many methods in statistical network analysis are traditionally designed for a single network, and can be applied to an aggregated network in this setting, but that approach can miss important functional structure. Here we develop an approach to estimating the expected network explicitly as a function of a continuous index, be it time or another indexing variable. We parameterize the network expectation through low dimensional latent processes, whose components we represent with a fixed, finite-dimensional functional basis. We derive a gradient descent estimation algorithm, establish theoretical guarantees for recovery of the low-dimensional structure, compare our method to competitors, and apply it to a dataset of international political interactions over time, showing our proposed method to adapt well to data, outperform competitors, and provide interpretable and meaningful results.


翻译:网络数据往往与辅助信息进行抽样,或通过对一个复杂系统的观察而收集,导致多个网络快照以连续变量为索引。统计网络分析中的许多方法传统上是为单一网络设计的,在这种环境下可以适用于一个综合网络,但这种方法可能错过重要的功能结构。我们在这里开发了一种方法,将预期网络明确作为持续指数的函数来估计,无论是时间还是另一个指数变量。我们通过低维潜伏过程来参数化网络的预期,其组成部分由固定的、有限的功能基础组成。我们得出梯度下限估计算法,为恢复低维结构建立理论保证,将我们的方法与竞争者进行比较,并将它应用到一段时间内国际政治互动的数据集中,展示我们提议的适应数据、优于竞争者的方法,并提供可解释和有意义的结果。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月17日
Arxiv
0+阅读 · 2022年11月15日
Arxiv
0+阅读 · 2022年11月15日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
14+阅读 · 2019年9月11日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关论文
Arxiv
0+阅读 · 2022年11月17日
Arxiv
0+阅读 · 2022年11月15日
Arxiv
0+阅读 · 2022年11月15日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
14+阅读 · 2019年9月11日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
Arxiv
19+阅读 · 2018年10月25日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员