This note extends an attribute of the LASSO procedure to a whole class of related procedures, including square-root LASSO, square LASSO, LAD-LASSO, and an instance of generalized LASSO. Namely, under the assumption that the input matrix satisfies an $\ell_p$-restricted isometry property (which in some sense is weaker than the standard $\ell_2$-restricted isometry property assumption), it is shown that if the input vector comes from the exact measurement of a sparse vector, then the minimizer of any such LASSO-type procedure has sparsity comparable to the sparsity of the measured vector. The result remains valid in the presence of moderate measurement error when the regularization parameter is not too small.
翻译:本说明将LASSO程序的一个属性延伸至一整类相关程序,包括平根LASSO、平方LASSO、LAD-LASSO和泛泛LASSO的例子。 也就是说,假设输入矩阵满足了 $\ ell_p$- restricted 等量测量属性(从某种意义上说,低于标准的 $@ ell_2$- restricted 等量测量属性假设),则显示如果输入矢量来自对稀散矢量的精确测量,那么任何这种LASSSO型程序的最小化器具有与测量矢量的宽度相当的宽度,结果仍然有效,因为如果规范参数不太小,则存在中度测量错误。