We study the stochastic contextual bandit with knapsacks (CBwK) problem, where each action, taken upon a context, not only leads to a random reward but also costs a random resource consumption in a vector form. The challenge is to maximize the total reward without violating the budget for each resource. We study this problem under a general realizability setting where the expected reward and expected cost are functions of contexts and actions in some given general function classes $\mathcal{F}$ and $\mathcal{G}$, respectively. Existing works on CBwK are restricted to the linear function class since they use UCB-type algorithms, which heavily rely on the linear form and thus are difficult to extend to general function classes. Motivated by online regression oracles that have been successfully applied to contextual bandits, we propose the first universal and optimal algorithmic framework for CBwK by reducing it to online regression. We also establish the lower regret bound to show the optimality of our algorithm for a variety of function classes.


翻译:我们用 knapsacks (CBwK) 来研究背景上的土匪问题, 每一个行动都是在某种背景下采取的, 不仅导致随机的奖励, 而且还以矢量形式花费随机的资源消耗。 挑战是如何在不侵犯每种资源的预算的情况下最大限度地获得全部的奖励。 我们在一个总体的可变性环境下研究这一问题, 因为在一般功能类别中, 所预期的奖励和预期成本分别是环境和行动功能的函数 $\ mathcal{F} $ 和$\ mathcal{G} $。 CBwK 的现有工程仅限于线性功能类别, 因为它们使用非常依赖线性形式的UCB型算法, 因而难以扩展到普通功能类别。 我们受已成功应用到环境强盗的在线回归或触法驱动, 我们提出CBWK 的第一个普遍和最佳的算法框架, 将其降低到在线回归 。 我们还设定了较低的遗憾约束, 以显示各种功能类的算法的最佳性 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月4日
Arxiv
0+阅读 · 2022年12月4日
Arxiv
0+阅读 · 2022年11月30日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员