We propose a novel deterministic sampling method to approximate a target distribution $\rho^*$ by minimizing the kernel discrepancy, also known as the Maximum Mean Discrepancy (MMD). By employing the general \emph{energetic variational inference} framework (Wang et al., 2021), we convert the problem of minimizing MMD to solving a dynamic ODE system of the particles. We adopt the implicit Euler numerical scheme to solve the ODE systems. This leads to a proximal minimization problem in each iteration of updating the particles, which can be solved by optimization algorithms such as L-BFGS. The proposed method is named EVI-MMD. To overcome the long-existing issue of bandwidth selection of the Gaussian kernel, we propose a novel way to specify the bandwidth dynamically. Through comprehensive numerical studies, we have shown the proposed adaptive bandwidth significantly improves the EVI-MMD. We use the EVI-MMD algorithm to solve two types of sampling problems. In the first type, the target distribution is given by a fully specified density function. The second type is a "two-sample problem", where only training data are available. The EVI-MMD method is used as a generative learning model to generate new samples that follow the same distribution as the training data. With the recommended settings of the tuning parameters, we show that the proposed EVI-MMD method outperforms some existing methods for both types of problems.
翻译:我们提出一种新的确定性抽样方法,通过尽量减少内核差异,即最大平均值差异(MMD),来估计目标分布值$\rho ⁇ $。我们提出一种新的确定性抽样方法,以通过尽量减少内核差异(也称为最大平均值差异(MMD))。我们通过使用通用的memph{eneric 变异率框架(Wang等人,2021年),将微粒最小化 MMD问题转化为解决粒子动态的ODE系统。我们采用隐含的 Euler 数字方法来解决ODE系统。这导致在粒子更新的每一次循环中出现一个最接近性最小化的问题,而更新的粒子可以通过L-BFGS等优化算法来解决。拟议的方法称为EVI-MD。为了克服高斯内核长期存在的带宽选择问题,我们提出了一种新的方法来动态地确定带宽度。我们用EVI算法解决了两种类型的取样问题。我们使用EVI的目标分布方法是完全指定的密度函数。 第二种方法是“MMVI的模型,我们使用新的数据形式学习方法,作为新的方法,我们使用的是新的方法。我们使用的。