We study constant-cost randomized communication problems and relate them to implicit graph representations in structural graph theory. Specifically, constant-cost communication problems correspond to hereditary graph families that admit constant-size adjacency sketches, or equivalently constant-size probabilistic universal graphs (PUGs), and these graph families are a subset of families that admit adjacency labeling schemes of size O(log n), which are the subject of the well-studied implicit graph question (IGQ). We initiate the study of the hereditary graph families that admit constant-size PUGs, with the two (equivalent) goals of (1) understanding randomized constant-cost communication problems, and (2) understanding a probabilistic version of the IGQ. For each family $\mathcal F$ studied in this paper (including the monogenic bipartite families, product graphs, interval and permutation graphs, families of bounded twin-width, and others), it holds that the subfamilies $\mathcal H \subseteq \mathcal F$ are either stable (in a sense relating to model theory), in which case they admit constant-size PUGs, or they are not stable, in which case they do not. The correspondence between communication problems and hereditary graph families allows for a new method of constructing adjacency labeling schemes. By this method, we show that the induced subgraphs of any Cartesian products are positive examples to the IGQ. We prove that this probabilistic construction cannot be derandomized by using an Equality oracle, i.e. the Equality oracle cannot simulate the k-Hamming Distance communication protocol. We also obtain constant-size sketches for deciding $\mathsf{dist}(x, y) \le k$ for vertices $x$, $y$ in any stable graph family with bounded twin-width. This generalizes to constant-size sketches for deciding first-order formulas over the same graphs.


翻译:我们研究的是成本不变的随机通信问题,并将这些问题与结构图理论中的隐含图形表达方式联系起来。具体地说,常价通信问题与世系图形家庭相对应,世系图形家庭接受的是不变大小的相近性草图,或等同的不变大小的概率通用图形(PUGs),而这些图形家庭是接受大小O(log n)的相近标签计划的家庭的子组,这是研究周密的隐含图形问题(IGQ)的主题。我们开始研究世系图家庭,这些家庭接受恒定规模的PUG(PG),其两个(等值)目标:(1) 理解随机大小的固定成本通信问题,以及(2) 理解IGQ的概率版本。对于本文中研究的每个家庭来说, $ math F$(log n) (log n) (log n) 是单一的双向双向的隐含双向图形问题。我们认为, 亚系的基数的基数(silfadi) 和直径直径直径直径直径直径(IQ) 是稳定的,从一种不具有常态的直径直径直径直系的货币解释法的。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月12日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
35+阅读 · 2020年1月2日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员