To achieve autonomy in unknown and unstructured environments, we propose a method for semantic-based planning under perceptual uncertainty. This capability is crucial for safe and efficient robot navigation in environment with mobility-stressing elements that require terrain-specific locomotion policies. We propose the Semantic Belief Graph (SBG), a geometric- and semantic-based representation of a robot's probabilistic roadmap in the environment. The SBG nodes comprise of the robot geometric state and the semantic-knowledge of the terrains in the environment. The SBG edges represent local semantic-based controllers that drive the robot between the nodes or invoke an information gathering action to reduce semantic belief uncertainty. We formulate a semantic-based planning problem on SBG that produces a policy for the robot to safely navigate to the target location with minimal traversal time. We analyze our method in simulation and present real-world results with a legged robotic platform navigating multi-level outdoor environments.
翻译:为了在未知和非结构化环境下实现自主性,我们提出了一种针对感知不确定性的基于语义的计划方法。这种能力对于在需要具有地形特定的运动策略的具有移动性压力的元素环境中进行安全和高效的机器人导航至关重要。我们提出了语义置信图(SBG),这是机器人在环境中的概率路标的几何和语义基础表示。SBG节点包括机器人几何状态和环境中地形的语义知识。SBG边缘表示驱动机器人在节点之间或调用信息收集操作以减少语义置信度不确定性的本地语义控制器。我们在SBG上制定了一个基于语义的规划问题,以产生机器人安全导航到目标位置的策略,并尽可能减少穿越时间。我们在仿真中分析了我们的方法,并呈现了在多层室外环境中进行跨越的双腿机器人平台的真实世界结果。