项目名称: 面向火星车的复杂环境实时建模与自主行为优化

项目编号: No.61273331

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 自动化技术、计算机技术

项目作者: 曹其新

作者单位: 上海交通大学

项目金额: 76万元

中文摘要: 复杂环境通常具有非结构特性, 如火星车在火星表面地形上的移动时, 陨石坑和沙坑分布情况及气候的多变性等因素,给火星车自主探测带来了不确定性。本项目结合移动机器人运动性能约束及相关未知环境属性,提出鲁棒自适应路径跟踪方法,提高处理突发情况的能力;针对环境特征的动态建模问题,建立基于立体视觉和全维视觉构成的异构多视觉导航系统,提出高效的同步全局重定位及地图重建理论、方法;通过研究降低地图创建复杂度方法,解决在线实时环境建模问题。面向非完整环境地图的增量式创建特点,采用"反应式行为规划"与"慎思式行为规划"相结合的复合式自主导航规划方法。针对现有移动机器人控制技术存在对未知环境动态适应性不足的问题,提出基于仿人动觉图式方法对移动机器人面向环境的自适应动态行为决策进行理论研究,从而为移动机器人在火星等未知复杂环境中的实时建模及自主行为优化提供了理论基础和技术支撑。

中文关键词: 火星车;地图创建;自主导航;行为优化;移动机器人

英文摘要: Usually the complicated environment is unstructured. For example, when the Mars rover moves on the Mars' terrain, it will encounter uncertainty problems brought about by the random distribution of the meteorite craters, or by the variations of the climate. Based on the constraints on the robot's mobile ability and the unknown environment, a robust adaptive path following method is proposed, aiming at improving the ability to deal with emergency situations. To tackle the dynamic environment modeling problem, an isomerism vision navigation system constituted by a stereo vision and an omni-directional vision is set up and an efficient simultaneous global localization and map building method is proposed. The online real-time environment modeling problem is solved by decreasing the complexity of the map building. Orientated at the incremental environment modeling, an autonomous navigation planning method is proposed by combining the "reactive activity planning" and the "cautious activity planning". To deal with the robot's adaptation inability facing dynamic environment, a humanoid action method is proposed to solid the theoretical basis for the mobile robot's real-time environment modeling and behavior optimization in unknown complicated environments such as the Mars.

英文关键词: Mars rover;Mapping;Autonomous navigation;Behavior optimization;Modile robot

成为VIP会员查看完整内容
0

相关内容

清华大学:从单体仿生到群体智能
专知会员服务
61+阅读 · 2022年2月9日
专知会员服务
62+阅读 · 2021年5月3日
专知会员服务
57+阅读 · 2021年4月22日
专知会员服务
48+阅读 · 2020年12月19日
专知会员服务
80+阅读 · 2020年12月11日
清华大学:从单体仿生到群体智能
专知
14+阅读 · 2022年2月9日
全链路联动: 面向最终目标的全链路一致性建模
机器学习与推荐算法
1+阅读 · 2021年9月27日
面向自动驾驶的边缘计算技术研究综述
专知
4+阅读 · 2021年5月3日
IROS2020|机器人自主探索与建图算法,代码已开源!
中国图象图形学报
29+阅读 · 2020年9月8日
网络安全态势感知
计算机与网络安全
25+阅读 · 2018年10月14日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
19+阅读 · 2018年6月27日
小贴士
相关资讯
清华大学:从单体仿生到群体智能
专知
14+阅读 · 2022年2月9日
全链路联动: 面向最终目标的全链路一致性建模
机器学习与推荐算法
1+阅读 · 2021年9月27日
面向自动驾驶的边缘计算技术研究综述
专知
4+阅读 · 2021年5月3日
IROS2020|机器人自主探索与建图算法,代码已开源!
中国图象图形学报
29+阅读 · 2020年9月8日
网络安全态势感知
计算机与网络安全
25+阅读 · 2018年10月14日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员