We consider for the first time a stochastic generalized Nash equilibrium problem, i.e., with expected-value cost functions and joint feasibility constraints, under partial-decision information, meaning that the agents communicate only with some trusted neighbours. We propose several distributed algorithms for network games and aggregative games that we show being special instances of a preconditioned forward-backward splitting method. We prove that the algorithms converge to a generalized Nash equilibrium when the forward operator is restricted cocoercive by using the stochastic approximation scheme with variance reduction to estimate the expected value of the pseudogradient.
翻译:我们第一次考虑到一个令人怀疑的普遍的纳什均衡问题,即预期价值成本和共同可行性限制,根据部分决定信息,意味着代理商只与某些信任的邻居进行通信。我们提出网络游戏和聚合游戏的几种分布式算法,这些算法是我们所显示的具有先决条件的向前向后分裂方法的特殊例子。我们证明,当远端操作商通过使用具有差异减少的随机近似法来估计假基因的预期价值而受到限制时,这些算法会达到普遍纳什平衡。