This paper presents a simple unsupervised visual representation learning method with a pretext task of discriminating all images in a dataset using a parametric, instance-level classifier. The overall framework is a replica of a supervised classification model, where semantic classes (e.g., dog, bird, and ship) are replaced by instance IDs. However, scaling up the classification task from thousands of semantic labels to millions of instance labels brings specific challenges including 1) the large-scale softmax computation; 2) the slow convergence due to the infrequent visiting of instance samples; and 3) the massive number of negative classes that can be noisy. This work presents several novel techniques to handle these difficulties. First, we introduce a hybrid parallel training framework to make large-scale training feasible. Second, we present a raw-feature initialization mechanism for classification weights, which we assume offers a contrastive prior for instance discrimination and can clearly speed up converge in our experiments. Finally, we propose to smooth the labels of a few hardest classes to avoid optimizing over very similar negative pairs. While being conceptually simple, our framework achieves competitive or superior performance compared to state-of-the-art unsupervised approaches, i.e., SimCLR, MoCoV2, and PIC under ImageNet linear evaluation protocol and on several downstream visual tasks, verifying that full instance classification is a strong pretraining technique for many semantic visual tasks.
翻译:本文提出了一个简单且不受监督的视觉代表性学习方法,其借口是使用参数、实例等级分类器对数据集中的所有图像进行区分。总体框架是一个受监督的分类模型的复制,其中语义类(如狗、鸟和船)被实例ID取代。然而,将分类任务从数千个语义标签扩大到数百万个实例标签带来了具体的挑战,包括1)大规模软式计算;2)由于不经常访问实例样本而导致的缓慢趋同;3)大量负面类可能吵闹。这项工作提供了几种应对这些困难的新技术。首先,我们引入了一个混合平行培训框架,使大规模培训成为可行。第二,我们为分类加权提供了一个原始的初始化机制,我们假定在实例之前就提供对比性歧视,并且可以明显加快我们的实验速度。最后,我们建议平整几个最难类的标签,以避免对非常相似的负对类进行优化。我们的框架在概念上简单易懂,但我们的框架实现了具有竞争力或超高性能的平行性工作,在州-市-市-市-级-级-级-级-SIC-SIM-SIM-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-S-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-