Humans read by making a sequence of fixations and saccades. They often skip words, without apparent detriment to understanding. We offer a novel explanation for skipping: readers optimize a tradeoff between performing a language-related task and fixating as few words as possible. We propose a neural architecture that combines an attention module (deciding whether to skip words) and a task module (memorizing the input). We show that our model predicts human skipping behavior, while also modeling reading times well, even though it skips 40% of the input. A key prediction of our model is that different reading tasks should result in different skipping behaviors. We confirm this prediction in an eye-tracking experiment in which participants answers questions about a text. We are able to capture these experimental results using the our model, replacing the memorization module with a task module that performs neural question answering.
翻译:人类通过一系列固定和编程来阅读。 它们经常跳过单词, 而不会明显妨碍理解。 我们给出了跳过的新解释 : 读者在完成与语言有关的任务和尽可能固定几个字之间实现最佳权衡。 我们提议了一个神经结构, 将关注模块( 决定是否跳过单词) 和一个任务模块( 模拟输入) 结合起来。 我们显示我们的模型可以预测人类跳过行为, 同时也可以很好地模拟阅读时间, 即使它跳过40%的输入 。 我们模型的关键预测是不同的阅读任务应该导致不同的跳过行为。 我们在一个视觉跟踪实验中确认这一预测, 参与者在实验中回答关于文本的问题。 我们可以使用我们的模型来捕捉这些实验结果, 用一个任务模块来回答神经问题, 用一个任务模块来取代记忆模块来取代记忆模块。