Real-time human motion reconstruction from a sparse set of (e.g. six) wearable IMUs provides a non-intrusive and economic approach to motion capture. Without the ability to acquire position information directly from IMUs, recent works took data-driven approaches that utilize large human motion datasets to tackle this under-determined problem. Still, challenges remain such as temporal consistency, drifting of global and joint motions, and diverse coverage of motion types on various terrains. We propose a novel method to simultaneously estimate full-body motion and generate plausible visited terrain from only six IMU sensors in real-time. Our method incorporates 1. a conditional Transformer decoder model giving consistent predictions by explicitly reasoning prediction history, 2. a simple yet general learning target named "stationary body points" (SBPs) which can be stably predicted by the Transformer model and utilized by analytical routines to correct joint and global drifting, and 3. an algorithm to generate regularized terrain height maps from noisy SBP predictions which can in turn correct noisy global motion estimation. We evaluate our framework extensively on synthesized and real IMU data, and with real-time live demos, and show superior performance over strong baseline methods.


翻译:人类实时运动从一组稀少的(例如六)可磨损的多功能模型中重建人类实时运动,提供了一种非侵入性和经济性的运动抓捕方法。如果不能直接从多功能模型直接获得定位信息,最近的工程采用了数据驱动方法,利用大型人类运动数据集解决这一未确定的问题。然而,挑战依然存在,例如时间一致性、全球和联合动议的漂移和在不同地形上对运动类型的不同覆盖。我们提出了一个新颖的方法,以同时估计全体运动,从实时的6个多功能模型中产生貌似可访问的地形。我们的方法包括了1个有条件的变异器解码器模型,通过明确推理预测历史提供一致的预测,2个简单而普遍的学习目标,名为“静态身体点 ” (SBPs),可以由变异动器模型预测,并通过分析程序用于纠正联合和全球漂移,3个算法,从噪音的SBPP预测中得出固定的地形高度图,而这种预测反过来又可以纠正全球运动的噪音估计。我们的方法包含我们框架的合成和实时实时模拟数据,并用实时演示显示强的绩效。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月31日
Arxiv
0+阅读 · 2022年10月31日
Arxiv
0+阅读 · 2022年10月30日
Arxiv
0+阅读 · 2022年10月28日
Arxiv
33+阅读 · 2022年2月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员