This paper addresses a common problem with hierarchical time series. Time series analysis demands the series for a model to be the sum of multiple series at corresponding sub-levels. Hierarchical Time Series presents a two-fold problem. First, each individual time series model at each level in the hierarchy must be estimated separately. Second, those models must maintain their hierarchical structure over the specified period of time, which is complicated by performance degradation of the higher-level models in the hierarchy. This performance loss is attributable to the summation of the bottom-level time series models. In this paper, the proposed methodology works to correct this degradation of performance through a top-down approach using odds, time series and systems of linear equations. Vertically, the total counts of corresponding series at each sub-level are captured while horizontally odds are computed to establish and preserve the relationship between each respective time series model at each level. The results, based on root mean square percentage error with simulated hierarchical time series data, are promising.
翻译:本文针对的是等级时间序列的一个共同问题。 时间序列分析要求模型序列必须是相应的子级多个序列的总和。 等级时间序列是一个双重问题。 首先, 等级中每个级别每个单个的时间序列模型必须分别估算。 其次, 这些模型必须在指定的时期内保持其等级结构, 而这又因等级中较高级别模型的性能退化而变得复杂。 这种性能损失可归因于底级时间序列模型的相加。 在本文中, 提议的方法通过自上而下的方法, 利用线性方程的概率、 时间序列和系统来纠正性能的这种退化。 垂直地, 每个分级中对应序列的总数被记录下来, 同时计算水平上的差异, 以建立和维护每个级别各个时间序列模型之间的关系。 根据模拟时间序列数据的根平方百分率错误得出的结果很有希望。