Recently, different machine learning methods have been introduced to tackle the challenging few-shot learning scenario that is, learning from a small labeled dataset related to a specific task. Common approaches have taken the form of meta-learning: learning to learn on the new problem given the old. Following the recognition that meta-learning is implementing learning in a multi-level model, we present a Bayesian treatment for the meta-learning inner loop through the use of deep kernels. As a result we can learn a kernel that transfers to new tasks; we call this Deep Kernel Transfer (DKT). This approach has many advantages: is straightforward to implement as a single optimizer, provides uncertainty quantification, and does not require estimation of task-specific parameters. We empirically demonstrate that DKT outperforms several state-of-the-art algorithms in few-shot classification, and is the state of the art for cross-domain adaptation and regression. We conclude that complex meta-learning routines can be replaced by a simpler Bayesian model without loss of accuracy.


翻译:最近,我们引入了不同的机器学习方法来应对挑战性的微小学习情景,即从与具体任务有关的小型标签数据集中学习。共同的方法采取了元学习的形式:学习从旧问题中学习新问题。认识到元学习正在多层次模式中进行学习后,我们提出一种通过使用深内核对元学习内环的贝叶斯治疗方法。因此,我们可以学习一个向新任务转移的内核;我们称之为深海内核传输(DKT ) 。这个方法有许多好处:可以直接作为单一的优化器实施,提供不确定性量化,不需要对具体任务参数进行估计。我们从经验上证明,DKT在微小的分类中超越了几种最先进的算法,是跨领域适应和回归的艺术状态。我们的结论是,复杂的元学习常规可以由简单的贝叶斯模式取代,而不会失去准确性。

1
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
17+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
136+阅读 · 2018年10月8日
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
17+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
136+阅读 · 2018年10月8日
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
Top
微信扫码咨询专知VIP会员