Reconstructing images from downsampled and noisy measurements, such as MRI and low dose Computed Tomography (CT), is a mathematically ill-posed inverse problem. We propose an easy-to-use reconstruction method based on Expectation Propagation (EP) techniques. We incorporate the Monte Carlo (MC) method, Markov Chain Monte Carlo (MCMC), and Alternating Direction Method of Multiplier (ADMM) algorithm into EP method to address the intractability issue encountered in EP. We demonstrate the approach on complex Bayesian models for image reconstruction. Our technique is applied to images from Gamma-camera scans. We compare EPMC, EP-MCMC, EP-ADMM methods with MCMC only. The metrics are the better image reconstruction, speed, and parameters estimation. Experiments with Gamma-camera imaging in real and simulated data show that our proposed method is convincingly less computationally expensive than MCMC and produces relatively a better image reconstruction.
翻译:从微小抽样和噪音测量中重建图像,如磁共振和低剂量测量成像仪(CT),是一个数学上不正确的反向问题。我们提出基于期望推进技术的容易使用的重建方法。我们将蒙特卡洛(Monte Carlo)方法、Markov链条蒙特卡洛(MC MC)和倍增效应(ADMM)代谢法的互换方向法纳入EP方法,以解决在EP中遇到的易感性问题。我们展示了复杂的贝叶斯模型的图象重建方法。我们的技术应用到伽马-摄像仪的图像中。我们将EPMC、EP-MCMC、EP-ADMMM方法与仅与MC方法进行比较。衡量标准是更好的图像重建、速度和参数估计。在真实和模拟数据中用伽马-摄像法进行的实验表明,我们所提议的方法在计算上比MC在成本上令人信服地低,并且产生相对更好的图像重建。